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Abstract. Mobile robots typically need a map of the environment to
perform their tasks. In indoor environments, a 2D geometric map is com-
monly represented by a set of lines and points. In this work we consider
a mobile robot with a laser range finder and the goal is to find the best
set of lines from the sequence of points given by a Jaser scan. We propose
a probabilistic method to deal with noisy laser scans, where the noise
is not properly modeled using a Gaussian Distribution. An experimen-
tal comparison with a very well known method (SMSM) using a mobile
robot simulator and a real mobile robot, shows the robustness of the new
method. The new method is also fast enough to be used in real time.

1 Introduction

A considerable number of researchers had been using laser range finders in mobile
robotics for indoor environments. Laser range finder measures the outline of
objects with high resolution and accuracy. This information can be used directly
to perform simple tasks. However in most of the mobile robot tasks is necessary
to build a map of the environment.

Normally the laser range finder performs is in a plane parallel to the floor
and cach laser scan provides n points from the environment as it is shown in the
figure 1(b). Usually points are expressed in polar format (r;, «;), where 7; is the
distance from the sensor to the detected object at direction «; (sce figure 1(a)).

Because indoor environments have a lot of planar surfaces such as walls,
doors, or cupboards; Line Maps (LM) are commonly used to represent them.
LM are more compact and accurate than occupancy grids. Unfortunately, as
state in [4], there are some difficulties to get the best LM from a laser scan: 1)
find the best number of lines, 2) determine which points belong to which line,
and 3) estimate the line model parameters given the points that belong to a line.

This paper introduces a new approach called WSAC to find the LM even in
the presence of noisy measurements. The main idea is to perform a probabilistic
search of a line © within a short sequence of consecutive measurements and then
review if there are more points in the laser scan that could be represented by ©.
The final line is estimated using all the possible points.

Problems associated with outliers (atypical data) are handled by the proba-
bilistic search and different segments of the same line are identified easily. Other
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Fig. 1. Lascr measurements

methods have difficultics with outliers or report many disconnected segments
when in fact they belong to the same line.

The rest of this paper is organized as follows: section 2 reviews previous
approaches to find a single line and multiple lines in a sequence of measurements.
Section 3 describes the proposed method, Window SAmple Consensus WSAC.
Experimental tests are reported in section 4 and some conclusions are given in
section 3.

2 Previous Works

In this section we briefly review some previous methods to estimate a single line
and multiple lines given a set of points.

2.1 Fitting a Single Line

Least Squares Methods. The method of Least Squares (LS) proposed by
Legendre and Gauss [14] assumes that the best-fit line is the line that minimizes
the sum of squared deviations or errors from the line to each point in the set of
points. We can state this formally:

Q=a7'gminE(9)=Z:e;'Z (1)

i=1
A common way to resolve eq. 1 is to calculate e; as the vertical offset as is shown
in the figure 2(a). In this case we have

e; = y; — (mz; +b) (2)
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Fig. 2. Different deviations from the line

where m and b are the parameters of the line given by y = mz + b. The solution
of equation 1 using vertical offsets (cq. 2) can be found in several textbooks (v.g.

(10)).
If we minimized perpendicular offsets e ;, as indicated in the figure 2(b),
instead of vertical offsets, the method is called Total Least of Squares (TLS). In

this case the error is given by
€1i =T —1T;cosq — y;sina (3)

where, 7 and « are the parameters of the estimated line in polar form. Finally if
instead of weighting all points equally, we use nonnegative constants or weights
a; associated with each point (z;,y;), equation 1 becomes

n
arg min Z a;[r — z; cos — y; sin oz]2 (4)
«a,r
i=1
and its solution is given by:

a= la.rctan :i'?%
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This method is called Weighted Total Least of Squares (WTLS) [1].

Robust Regression. The Least-Squares methods are sensible to outliers [12].
An outlier is a single observation far away from the rest of the data. There are
several alternatives to deal with data contaminated with outliers. M-Estimators
[17,6] reduce the effect of outliers applying weighting functions, reducing the
problem to a WTLS problem.

Roussceuw [12] introduced the Least Median of Squares (LMS), which mini-
mizes the median of the sequence of squared deviations,

E = median(e?, e2,...,e2) (7)

The minimization of 7 can not be obtained analytically and therefore requires
an iterative method.

Another alternative is the method RANdom SAmple Consensus (RANSAC)
[3] described in the Algorithm 1. One of the strengths of RANSAC is its ability
to estimate the parameters with accurancy even when outliers are present in the
data set. Frequently RANSAC is a better choice than LMS in vision due it can
be better adapted to complex data analysis situations [9].

Algorithm 1 RANSAC Algorithm

Input: P = {(zi,yi)|i = 1...n}, and a number of tries m
Output: Line 6°

1. j« 0,n® « 0.
2. Repeat until 3 <m
—J—3+1
Select randomly two points from P and compute the line parameters O;
— Count the number of inliers n; given a user tolerance t
if n; > n® then n* — n;, 6° — 6;
3. Reestimate O°.

Unfortunatelly, this approach has difficulties: if the threshold ¢ is set too high
then the model estimation can be very poor. n; in algorithm 1 can be viewed as
a cost function @ given by

Ce = Zﬂ(eu) (8)
=1

where
1 ifey; <t
0 elsewhere (9)

pleLi) = {

and e, ; is the orthogonal distance of the i—th point to the line ©. However,
rather than using eq. 9, Torr and Zisserman in [15] proposes a better method
called MSAC which uses the following cost function:
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FxEd et if(f[i<t
plers) = {I elsewhere (10)

2.2 Finding Multiple Lines

There are several methods to find multiple lines [11, 13]. The most popular meth-
ods are: Ezpectation-Mazimization (EM) (8], Line Tracking (LT) (2], Iterative
End Point Fit (IEPF) (2], the Hough Transform (HT) [7.5,16] and the Split-
Merge Split-Merge algorithm (SMSM) [18]. This section describes briefly the
IEPF and SMSM algorithms due to its popularity and simplicity.

The method Iterative End Point Fil is illustrated in figure 3 and is explained
in algorithm 2.

Fig. 3. Iterative End Point Fit(IEPF)

Algorithm 2 IEPF Algorithm

Input: The laser scan S = {(ri,ai)]i = 1...n} and a threshold (
Output: The map of lines M

1. Initialize a list £ with P, M — {}
2. While £ # {}

(a) Get the next set S; in £

(b) Find the line © which joins the first and the last point of S;.

(c) Detect the point (74, ax) with maximum distance €1 maz to the line 6.

(d) Remove S; from L.

(e) If €lmar >t then

Add Sjo = {(r;.e;)li=1...k -1} and Sj1 = {(rj, ;)i =k...n,} to L.
(f) Else
- Fit a line 6; to all points in S; (v.g using LS) and put ; into M.

3. Merge collinear segments in M.
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The Split-Merge Split~-Merge algorithm (SMSM) (18] is an extended and
more robust version of the IEPF algorithm. The first step consists in applying
a Breakpoint Detector [1]. The idea behind this step is to detect and eliminate
outliers, because they are not going to be included in any cluster. Then it merges
two consecutive clusters if their distance (the distance between the final point of
the first cluster and the first point of the second cluster) is less than a predefined
threshold. In the second phase, SMSM applies the IEPT algorithm to all clusters.
Finally it combines collinear segments.

3 A New Approach: WSAC

The main idea of the WSAC algorithm can be described focusing on how it
extracts a single line. To extract a line the algorithm takes advantage of the
order of the laser scan, searching a line © in a window S as shown in figure 4.
A window S is defined as a set of ¢; consecutive points. If the algorithm finds a
line in S, then it looks more points outside the window S; that fit with the line
O, as shown in figure 4(b).

The line @ obtained by this approach can represent disjoint regions as shown
in figure 4(b), whereas other approaches require an extra phase of post-processing
to merge collincar segments. The WSAC algorithm also manages the outliers
appropriately by using a random selection algorithm within window S;.

..
.« o2,

(a) Local search (b) Global fit

Fig.4. WSAC

Algorithm 3 explains the local search shown in the figure 4(a). It has a
random algorithm similar to MSAC. To improve results it includes a mechanism
of a "sliding window”. It means that the window can move slightly through the
laser scan.

" A local search is successful if the weighted consensus C® of the line ©° is
greater than some threshold Cryin.

If the local search was successful the algorithm performs the global fit. Oth-
erwise it performs another local search in a different window.
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The global search has three steps. Fist the algorithm determines the set of
points Se that support line ©° by searching into the whole laser scan P. Second
it removes the points which belong to simall length segments from Sg. This st,c;;
finds the segments of Sg by applying a BreakPoint Detector algorithm similar
to the one presented in (1]. Finally the line parameters are recomputed using the
set of inliers Sg and the line is added to the Map. An important consideration
is that after the global search the points in Sg are removed from the laser scan

P.

Algorithm 3 WSAC: Searching a line within a sliding window

Input: The las,ex.' scan 'P = {(i,y:)li = 1...n}, the reference point [, a sliding
constant k4, a window size ¢;, and a number of tries m
Output: A line ©° with consensus C*

1. ]-—-0. Cc* —0.
2. Repeat until j <m
—jej+l
— Compute ks, 0 < ks < kq using an uniform probabilistic distribution
— Compute the initial point by skipping k. points from [
— Compute the window S; by selecting ¢; points starting from the initial point
- Select two points randomly from S; and compute the line parameters 6;
Compute the cost C» (weighted consensus) of 6; using the MSAC cost function
- if Co > C® then C* — Cq, O° — 6;

The algorithm 4 shows how WSAC works and figure 5 shows a graphical
example. The first local search with point of reference [ = 1 for the sliding
window S; is represented by figures 5(a), 5(b), 5(c) and 5(d). The first local
search was not successful. The second local search, with [ = 4, is represented by
the figures 5(¢), 5(f), 5(g) and 5(h). In Figure 5(h) we found a line supported
by points 6, 7, 8 and 10. In the global search, points 12 and 13 are added to the
set So, and the line is putted into the map. Finally the last local search with
| = 4 and the remaining points will be unsuccessful (see Figure 5(i)).

4 Experimental Results

We perform two kind of tests: 1) using simulated data of a Laser Range Finder
mounted on a mobile robot in a structured environment, and 2) using a real
mobile robot equipped with a LMS209-S02 SICK Laser Measurement System
(see Figure 6(a)).

4.1 Test Using Synthetic Data

The simulated environment, shown in figure 6(b), has 12 walls, each one labeled
with a number. The aim of this test is to evaluate the robustness of the proposed
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(b) Simulated environment

Fig. 6. Our mobile robot and a simulated environment
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Algorithm 4 WSAC

Input: The laser scan P = {(z;,y:)]i =1...n}
Output: A map of lines M

1.1—1
2. while l < n do
(a) Perform the local search (algorithm 3) obtaining @, Se and Ce
(b) if Co < Cmin then
— Merge into S the points of P correctly represented by &
— Extract from Se points which belongs to small segments
- if Se have more than 1 element, recompute the line parameters from Se,
remove the points in Se from P and add @ into M
— Relocate ! to the next point in 7P
(c) else
Increment | with a constant value [ — [ + k&

method against the popular SMSM method. In this experiment the robot follows
the path ABCDEFGHIJK doing a total of 1000 synthetic laser scans.

Each laser scan has 361 measurements covering 180° with a resolution of
0.5° and a maximum distance of 32m. The simulator replaces 20% of the mea-
surements with a spurious noise (simulated by adding an uniform random value
between 0 and the maximum distance). The remaining measurements were only
contaminated with a Gaussian random noise with ¢ = 3cm. :

Table 1 shows the results for this experiment, where the best values are' in
boldface. As we can see, WSAC got better results: in the parameters of tl}e line
(]Ar| and |A«|) and in a better association of points with lines (shown in the
last column of the table).

For this test we use a IIP Pavilion notebook, Celeron 1.1 Ghz, 256 Mb'
Thr methods are implemented using the C language under the Linux operating
system. In this situation the maximum time consumed by the SMSM was 29.5ms
whercas WSAC got 50.1ms. SMSM is faster than WSAC.

4.2 Test Using Real Data

Figure 7 shows an example of the lines extracted by SMSM and WSAC in a real
environment. Figure 7(a) shows the laser scan for this example.

Figures 7(b) and 7(c) show results of both methods over the a o i
with an ’A’ in the laser scan. SMSM gets a single line (sce Figure 7(b).) Whelf‘db
WSAC gets the lines 1 and 2 (figure 7(c)), which better represent this portion
of environment.

Figures 7(d) and 7(e) show the lines obtained by both methods ov :
labeled with an *B’ in the laser scan. In this case, SMSM reported more se :
lines than WSAC. However lines 1 and 2 in Figure 7(d) correspond to the single
line 1 in the Figure 7(e). Similarly, lines 3, 4, 5 and 6 in Figure 7(d) correspond

rea labeled

er the area
gment
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Fig. 7. Results using the real mobile robot
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Table 1. Results obtained in the simulated environment
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line

qty
SMSM WSAC

|Aa|

SMSM WSAC

OAa
SMSM WSAC

| 4]

SMSM WSAC

gAr
SMSM WSAC

Tpoints
SMSM WSAC

629
454
632

609
422
626

0.017 0.111
0.030 0.023
0.011 0.011

0.027 0.017
0.028 0.020
0.020 0.017

25.433 17.125
52.682 42.947
18.386 16.916

39.96 25.457
50.090 45.658
31.302 29.361

35.11 62.59
12.18 20.05
40.70 69.88

468
692
392

393
689
322

0.036 0.029
0.011 0.009
0.034 0.029

0.029 0.026
0.022 0.014
0.029 0.027

57.801 46.617
15.204 13.405
51.614 42.923

56.035 46.758
24.717 22.942
56.139 49.473

11.53 21.59
45.33 76.20
12.18 22.02

566
312
237

560
266
192

0.014 0.010
0.352 0.026
0.035 0.022

0.023 0.016
0.031 0.026
0.035 0.025

25.733 16.336
43.312 32.764
56.155 36.307

42.320 27.521
47.049 40.455
60.181 43.705

39.85 70.57
15.19 31.43
13.79 31.32

314
241
155

b—
o m o|© N G BW N -

282
216
131

0.034 0.026
0.036 0.026
0.043 0.027

0.031 0.027
0.032 0.026
0.037 0.027

49.564 40.639
47.576 40.583
42.248 23.958

50.465 50.192
52.376 56.977
47.760 29.220

14.21 26.95
14.44 29.70
17.83 39.51

to the single line 2 in Figure 7(e). Also in this case, WSAC got better results
than SMSM.

5 Conclusions

We propose a robust method to find multiple lines in a laser scan, avoiding
problems due to outliers and merging local and global strategies. We use a M-
Estimator within a RANSAC method to find a line from a short sequence of
points of the laser scan (the local strategy), then the line is evaluated and re-
fined using the whole set of points (the global strategy), discarding those point
belonging to very small segments.

This method is fast and it is able to find better results than the SMSM
method, a very well known method.

In the future we plan to formulate a global cost function to evaluate how
good is the set of lines found. With this cost function, inserting or deleting lines
will depend on how they affect the global cost.
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